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It is suggested that the dynamics of liquid water have a component consisting of
O�2z (oxygen) anions and Hþz (hydrogen) cations, where z is a (small) reduced
effective electron charge. Such a model may apply to other similar liquids.
The eigenmodes of density oscillations are derived for such a two-species ionic
plasma, included the sound waves, and the dielectric function is calculated.
The plasmons may contribute to the elementary excitations in a model introduced
recently for the thermodynamics of liquids. It is shown that the sound anomaly in
water can be understood on the basis of this model. The results are generalised to
an asymmetric short-range interaction between the ionic species as well as to
a multi-component plasma, and the structure factor is calculated.

Keywords: density oscillations; water; sound waves; ‘two-sounds anomaly’

PACS: 61.20Qg; 62.60.þv; 78.40.Dw

1. Introduction

As simple as it may appear, water is still a complex liquid involving various interactions,
as well as kinematic and dynamic correlations. It is widely agreed that the water molecule
in liquid water preserves to some extent its integrity, especially the directionality of the
sp3-oxygen orbitals, though it may be affected substantially by hydrogen bonds [1,2].
As such, it is conceived that water has a molecular electric moment, an intrinsic
polarisability and hindered rotations (librations) which may affect its orientational
polarisability. We examine herein another possible component of the dynamics of the
liquid water, as resulting from the dissociation of the water molecule.

The water molecule H2O has two H–O (hydrogen–oxygen) bonds which make an angle
of ca. 109� in accordance with the tetragonal symmetry of the four hybridised sp3-oxygen
orbitals. The ‘spherical’ diameter of water molecule is �2:75 Å and the inter-molecular
spacing in liquid water under normal conditions is a � 3 Å. This suggests that the water
molecule in liquid water, while preserving the directionality of the oxygen electronic
orbitals, might be dissociated to a great extent. Dissociation models which assume
OH��Hþ or OH��H3O

þ pairs are well known for water. This indicates a certainmobility
of hydrogens (and oxygens) in water. We analyse herein the hypothesis that water may
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consist of O�2z anions of massM¼ 16 amu and density n and Hþz cations (protons) of mass
m¼ 1 amu and density 2n, where z is a small reduced effective electron charge (the atomic
mass unit, 1 amu’ 1.7� 10�24 g). We shall see that such a hypothesis adds another
dimension to the dynamics of water. Such a model may apply to other similar liquids.

Due to their large mass, the ions have a classical dynamics. Herein, we limit ourselves
to considering the ions motion in water under the action of the Coulomb potentials
’OO¼ 4z2e2/r, ’HH¼ z2e2/r and ’OH¼�2z

2e2/r, where �e (’� 4.8� 10�10 esu) is the
electron charge and r denotes the distance between the ions. For stability, it is also
necessary to introduce a short-range repulsive (hard-core) potential �.1 It is shown that in
the limit z!0 water may exhibit an anomalous sound-like mode beside both the ordinary
(hydrodynamic) one and the non-equilibrium sound-like excitations governed by
short-range interactions. We compute the density oscillations for this model, the dielectric
function, the structure factor, and extend the model to a multi-component plasma,
including an asymmetric short-range interaction between ion species.

2. Plasmons in a jellium model

Let us consider one species of charged particles, with charge �ze, continuously distributed
with density n in a neutralising rigid continuous background of positive charge. This is the
well-known jellium model [7]. The Coulomb interaction reads

U ¼
1

2

Z
dr dr0’ðr� r0Þ�nðrÞ�nðr0Þ, ð1Þ

where �nðrÞ denotes a small disturbance of density (which preserves the global neutrality).
We introduce the Fourier representation

�nðrÞ ¼
1ffiffiffiffi
N
p

X
q

�nðqÞeiqr, �nðqÞ ¼
nffiffiffiffi
N
p

Z
dr�nðrÞe�iqr, ð2Þ

where N¼ nV is the total number of particles in volume V. Similarly,

’ðrÞ ¼
1

V

X
q

’ðqÞeiqr, ’ðqÞ ¼

Z
dr’ðrÞe�iqr, ð3Þ

where ’ðqÞ ¼ 4�z2e2=q2 is the Fourier transform of the Coulomb potential (interaction).
The Coulomb interaction given by (1) becomes

U ¼
1

2n

X
q

’ðqÞ�nðqÞ�nð�qÞ ð4Þ

(where the q¼ 0-term is excluded by the positive background).
The small variations �nðrÞ in density can be represented as �n ¼ �n div u, where u is

a displacement vector [8]. We emphasise that such a representation holds for quðrÞ � 1.
It follows �nðqÞ ¼ �inquðqÞ, and one can see that the Coulomb interaction involves only
longitudinal components of the displacement vector uðqÞ along the wavevector q.
Therefore, we may write uðqÞ ¼ ðq=qÞuðqÞ, with �n�ð�qÞ ¼ �nðqÞ, u�ð�qÞ¼uðqÞ and
u�ð�qÞ ¼ �uðqÞ. The Coulomb interaction (4) becomes

U ¼ �
n

2

X
q

q2’ðqÞuðqÞuð�qÞ: ð5Þ
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The kinetic energy associated with the coordinates uðqÞ is given by

T ¼
1

2

Z
drnm_u2 ¼ �

1

2
m
X
q

_uðqÞ _uð�qÞ, ð6Þ

where m denotes the particle mass. The equations of motion obtained from the Lagrange

function L¼T�U are

m €uðqÞ þ nq2’ðqÞuðqÞ ¼ 0, ð7Þ

which leads to the well known plasma oscillations with frequency given by

!2
p ¼ 4�nz2e2=m.

3. Plasma oscillations with two species of ions

We apply the above model to the two species of ions O�2z and Hþz. The change in density

is associated with a displacement vector v in the former and a displacement vector u in the

latter. First, we note that the Fourier transforms of the Coulomb potentials are given

by ’OO¼ 4’(q), ’HH¼ ’(q) and ’OH¼�2’(q), where ’(q)¼ 4�z2e2/q2. Therefore,

the interactions can be written as

UOO ¼ �
n

2

X
q

q2 4’ðqÞ þ �ðqÞ½ �vðqÞvð�qÞ,

UHH ¼ �2n
X
q

q2 ’ðqÞ þ �ðqÞ½ �uðqÞuð�qÞ,

UOH ¼ n
X
q

q2½2’ðqÞ � ��uðqÞvð�qÞ,

ð8Þ

where n¼N/V is the density of water molecules and the Fourier transform, �, of

a hard-core potential has been introduced (the same for both species). The kinetic energy

is given by

T ¼ �
1

2
M
X
q

_vðqÞ _vð�qÞ �m
X
q

_uðqÞ _uð�qÞ, ð9Þ

and the equations of motion read

m €uþ 2nq2ð’þ �Þu� nq2ð2’� �Þv ¼ 0

M €vþ nq2ð4’þ �Þv� 2nq2ð2’� �Þu ¼ 0,
ð10Þ

where we have dropped out the argument q.
The solutions of these equations can be obtained straightforwardly. In the long

wavelength limit q! 0, there are two branches of eigenfrequencies, one given by

!2
p ¼

16�nz2e2

�
, ð11Þ

corresponding to plasma oscillations and another given by

!2
s ¼

9n�

Mþ 2m
q2 ¼ v2s q

2, ð12Þ
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corresponding to sound-like waves propagating with velocity vs given by (12).

�¼ 2mM/(2mþM) is the reduced mass. The plasma oscillations are

associated with antiphase oscillations of the relative coordinate (2muþMv¼ 0), while

the sound waves are associated with in-phase oscillations of the centre-of-mass coordinate

(u� v¼ 0).

4. Polarisation

An external electric field arising from a potential �ðrÞ gives an additional energy:

Ui ¼ qi

Z
dr�ðrÞ�niðrÞ ¼ �iðniqi=nÞ

X
q

q�ðqÞuið�qÞ, ð13Þ

for a species of ions labelled i, with electric charge qi and density ni. We apply this formula

to the two-species ionic plasma, and get

UH ¼ �2ize
X
q

q�ðqÞuð�qÞ , UO ¼ 2ize
X
q

q�ðqÞvð�qÞ: ð14Þ

Adding these two terms to the lagrangian, the equations of motion given by (10) become

m €uþ 2nq2ð’þ �Þu� nq2ð2’� �Þv ¼ �izeq�

M €vþ nq2ð4’þ �Þv� 2nq2ð2’� �Þu ¼ 2izeq�,
ð15Þ

where we have dropped out the argument q. This is a system of coupled harmonic

oscillators under the action of an external force. In the limit of long wavelengths,

its solutions are given by

u ¼
izeq

m
�
!2 � ð2m=3�Þ!2

s

ð!2 � !2
pÞð!

2 � !2
s Þ
,

v ¼ �
2izeq

M
�
!2 � ð2M=3�Þ!2

s

ð!2 � !2
pÞð!

2 � !2
s Þ
:

ð16Þ

On the other hand, equation ni div ui ¼ ��ni is in fact the Maxwell equation

divEi ¼ 4�qi�ni, where the electric field is given by Ei ¼ �4�nqiui. We have

therefore the internal electric fields Eu¼�8�nzeu and Ev¼ 8�nzev. The polarisation

P¼�(EuþEv)/4� is given by

PðqÞ ¼ 2nze uðqÞ � vðqÞ½ � ¼
iq

4�
�ðqÞ

!2
p

!2 � !2
p

: ð17Þ

The external field is related to the external potential through DðqÞ ¼ �iq�ðqÞ and the

dielectric function " is given by D¼ "E¼ "(DþEint), where Eint¼EuþEv is the internal

field. We get the dielectric function:2

" ¼ 1� !2
p=!

2, ð18Þ

as expected. As it is well known, its zero gives the longitudinal mode of plasma oscillations.
The !p in the nominator of Equation (18) also defines the plasma edge: for frequencies

lower than !p, the electromagnetic waves are absorbed (the refractive index is given
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by n2¼ "). It is well-known that water indeed exhibits a strong absorption in the
gigahertz-terrahertz region [9–11]. On the other hand, neutron scattering on heavy water
[12,13], as well as inelastic X-ray scattering [14], revealed the existence of a dispersionless

mode ’ 4� 5meV (’ 1013s�1) in the structure factor, which may be taken tentatively as
the !p-plasmonic mode given by Equation (11). Making use of this equation we get
!p’ 3� 1014zs�1 (n¼ 1/a3, a ¼ 3 Å), so we may estimate the reduced effective charge
z’ 3� 10�2.

5. Dielectric function

The dielectric function given by Equation (18) has a singularity for !¼ 0, as arising from

the exact cancellation in the static limit of the external field by the internal field. It is
plausible to assume that residual polarisation fields are still present in this static limit,
such as, for instance, the intrinsic polarisability. In this case, Equation (18) is modified,
and the dielectric function is of the type

" ¼
!2 � !2

p

!2 þ !2
0

, ð19Þ

where !0 is a plasma frequency associated with the intrinsic, molecular polarisability.3

As such, it is a very high frequency, and Equation (19) gives a small, negative contribution
to the dielectric function in the static limit (!! 0).

The dielectric properties of water are still a matter of debate. It is agreed that the

permitivity dispersion of water is described to some extent by a Debye model of the form
"¼ aþ b/(1� i!�), where a and b are semi-empirical parameters and �� �a3/T is
a relaxation time; � denotes the viscosity and T is the temperature [15,16]. This Debye
model assumes mainly an orientational polarisability of electric dipoles, which, due to the
preservation of the directional character of the O–H bonds, is compatible with the plasma
model suggested here for water. Therefore, the contribution given by Equation (19)

should be added to the above Debye formula for the dielectric function, which becomes

" ¼ aþ
b

1� i!�
þ
!2 � !2

p

!2 þ !2
0

: ð20Þ

Parameters a and b in Equation (20) are related to the static permitivity "0 and
high-frequency permitivity "1 through

"0 ¼ aþ b� !2
p=!

2
0 , "1 ¼ aþ 1: ð21Þ

We may neglect !2
p=!

2
0 here because it is too small, and we may also take "1¼ 1(a¼ 0).

The static permitivity "0¼ b is given mainly by the electric dipoles. Let p be such an electric
dipole. Its energy in an electric field D is �pD cos 	, where 	 is the angle between p and D.
The thermal distribution of such dipoles is dw � expð�pD cos 	=T Þdðcos 	Þ, where T

denotes the temperature. We easily get the thermal average hcos 	i ¼ �Lð pD=T Þ, where
LðxÞ ¼ cothðx� 1Þ=x is the well-known Langevin’s function.

We take p¼ 2eze(a/2)¼ ezea, where a � 3 Å and ze is a delocalised reduced charge
associated with the H–O dipole. We estimate the argument pD/T of the Langevin’s
function. At room temperature, we find pD/T’ 3� 10�4Dze. For pD/T¼ 1 this
corresponds to an external field D ¼ ð1=3zeÞ � 104 esu, or D¼ 108/zeVm�1
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(1 esu¼ 3� 104Vm�1 [17]). This is an extremely high field, so we are justified to take

pD/T�1, and L( pD/T )’ pD/3T. We get therefore a polarisation P ¼ �nphcos 	i ¼
np2D=3T, an internal field Eint¼�4�P¼�4�np

2D/3T, and a permitivity

"0 ¼ b ¼
1

1� 4�np2=3T
ð22Þ

from D¼ "E¼ "(DþEint). This is the well-known Kirkwood formula [15]. For the

empirical value "0¼ 80, we get (at room temperature) a reduced charge ze’ 10�2. This is in

good agreement with the Hþz�O�2z plasma charge z estimated above.

6. Cohesion and thermodynamics

Recently, a model of liquid has been introduced [18] based on an excitation spectrum

(per particle) of the form "n¼�"0þ "1(nþ 1)2, where "0 is a cohesion energy and "1 is the
quanta of energy of a harmonic oscillator with one degree of freedom; n here represents the

quantum number. The model also includes the kinematic correlations (spatial restrictions)

of the movement of the liquid molecules. This model leads to consistent thermodynamics

for liquids, arising from statistics which are equivalent to the statistics of bosons in two

dimensions.
For water, the cohesion energy per particle "0 can be estimated from the vaporisation

heat (’ 40 kJmol�1). It gives "0� 103K. On the other hand, it was shown in two previous

papers [19,20] that the transition temperature between a gas and a liquid of identical

particles is approximately given by

Tt ¼
4

3

"0
lnð"0=T0Þ

, ð23Þ

where T0¼ �h2n2/3/m is a gas characteristic temperature. We can apply this formula to water

dissociation, taking n as the density of hydrogen atoms, m as the mass of two hydrogen

atoms and Tt¼ 383K (at normal pressure; "0 depends on the inter-particle spacing).

We may neglect the oxygen, as it is too heavy in comparison with the hydrogen atoms.

We get T0’ 2K and the above formula gives "0’ 2000K’ 200meV for the cohesion

energy of water per molecule, which is consistent with the above estimate (1 eV’ 11.6�

103K; n’ 1/a3 with a ¼ 3 Å and �h’ 10�27erg s-1; Bohr radius aH ¼ �h2=mee
2 ’ 0:53 Å,

e2/aH’ 27.22 eV, where me is the electron mass).4

The plasma oscillations obtained above can be quantised and the energy levels of the

plasma read:

En ¼
X
q

�h!pðnþ 1=2Þ ¼
V

ð2�Þ3
4�

3
q3c 	 �h!pðnþ 1=2Þ, ð24Þ

where qc is a cutoff wavevector. The prefactor in Equation (24) is Vq3c=6�
2 ’ Nðaqc=4Þ

3,

so the energy levels given above can be written as

En ¼ N"1ðnþ 1=2Þ, ð25Þ

where "1¼ (aqc/4)�h!p. These energy levels correspond to a harmonic oscillator with one

degree of freeedom. It follows that the present description of water as a two-species

of highly dissociated ionic plasma provides a further support for the liquid model
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mentioned above. If we take qc’ 1/a the energy quanta "1¼ (aqc/4)
3�h!p¼ ’ 3 zmeV

represents the "1 parameter in the spectrum of the liquid. (The plasma frequency given by
Equation (11) is !p’ 200zmeV).

7. Debye screening and the correlation energy

As is well known, the plasma excitations described above represent collective oscillations
of the density in the long wavelength limit. At the same time, they induce correlations in
the ionic movements. For a classical plasma these correlations are associated with
a screening length given by the Debye–Huckel theory as [21]


�1 ¼ T=24�nz2e2
� �1=2

, ð26Þ

for our case (
�1 ¼ ðT=4�e2
P

i niz
2
i Þ
�1where i labels the ionic species with density ni and

charge ezi. The formula is valid for the Coulomb energy z2e2/a much lower than the
temperature T. In the present case, we have z2e2/a’ 45K (for z’ 3� 10�2), which shows
that the above condition is fulfilled. From (26) we get 
�1 � 1 Å (at room temperature),
in agreement with the present molecular-dissociation model. The correlation energy per
particle is given by

"corr ¼ �
e2

a

ffiffiffiffiffiffiffi
�e2

Ta

s
ð6z2Þ3=2 ð27Þ

{"corr ¼ �ðe
2=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2=Ta

p
ð
P

i niz
2
i Þ

3=2}. The estimation of this energy gives "corr�10
2K

(at room temperature). It contributes to the cohesion energy.

8. Sound anomaly

The sound-like branch !2’!s¼ vsq, where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n�=ðMþ 2mÞ

p
according to

Equation (12), is distinct from the ordinary hydrodynamic sound whose velocity is
given by the well-known formula v0 ¼ 1=

ffiffi
ð

p

nmÞ for a one-component fluid, where 
 is the

adiabatic compressibility. For the present two-component fluid (Hþz�O�2z plasma),
the velocity of the ordinary sound is given by v0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðMþ 2mÞ

p
. The former represents

a non-equilibrium elementary excitation, whose velocity vs does not depend on
temperature, while the latter proceeds by thermodynamic, equilibrium, adiabatic
processes, and its velocity v0 depends on temperature through the adiabatic
compressibility 
. In order to distinguish them from the hydrodynamic sound, we propose
to call the sound-like excitations derived here density ‘kinetic’ modes or ‘densitons’.
The distinction between the two sounds is made by a threshold wavevector qt in the
following manner. Suppose that there is a finite lifetime, �, for the sound-like excitations
!s, propagating with a velocity vs and a corresponding meanfree path �¼ vs�. If the
sound-like wavelength � is much longer than the meanfree path, �
�, then we are in
the collision-like regime (!s�� 1), and the collisions may restore the thermodynamic
equilibrium. In this case the hydrodynamic sound propagates, and the sound-like
excitations do not. This condition defines the threshold wavevector qt¼ 1/vs�. In the
opposite case, q
 qt (collision-less regime), it is the sound-like excitations that propagate,
and not the hydrodynamic sound. The finite lifetime � originates in the residual
interactions between the collective modes and the underlying motion of the
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individual particles. It is easy to estimate this residual interaction [8]. It is given by
ffiffiffiffiffiffi
"T
p

,

where " is the mean energy per particle corresponding to the motion of the individual

particles. We get, therefore, � ’ �h=
ffiffiffiffiffiffi
"T
p

and the threshold wavevector qt ¼
ffiffiffiffiffiffi
"T
p

=�hvs. It is
difficult to have a reliable estimation of the mean energy "; for a resonable value

"¼ 10meV we get qt ’ 0:1 Å
�1

at room temperature for v¼ 3000m s�1, which is in good

agreement with experimental data.
Indeed, the phenomenon of two-sound anomaly in water is well documented [22,23].

Neutron, X-ray, Brillouin or ultraviolet light scattering on water revealed the existence of

a hydrodynamic sound propagating with velocity v0’ 1500m s�1 for smaller wavevectors

and an additional sound propagating with velocity ’ 3000m s�1 for larger wavevectors.

In addition, though both sound velocities do exhibit an isotopic effect, their ratio does not.

According to the above discussion, we assign this additional, faster sound to the

sound-like excitations derived here. We can see that both v0 and vs given above

exhibit a weak isotopic effect, while their ratio vs=v0 ¼ 3n
ffiffiffiffiffiffi

�
p

does not. From

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n�=ðMþ 2mÞ

p
¼ 3000m s�1 we get the short-range interaction � ’ 7 eV 	 Å

3
.

Similar results are obtained for other forms of dissociation of the water molecule,

like OH�–Hþ or OH�–H3O
þ, so the Hþz–O�2z plasma model employed here can be

viewed as an average, effective model for various plasma components that may exist in

water.

9. Another possible anomalous sound

It is worth calculating the spectrum given by equations of motion (10) without neglecting

higher-order contributions in q2. The result of this calculation is given by

!2
1,2 ¼

1

2
!2
p 1þ Ax2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Bx2 þ A2x4

ph i
, ð28Þ

where

A ¼
1

9�
ð2þ 5�þ 2�2Þ , B ¼

1

9�
ð2� 13�þ 2�2Þ , � ¼ m=M ð29Þ

and x¼ vsq/!p. It is shown in Figure 1.
Frequency !2 in Equation (28) represents the sound-like branch, which goes like

!2’!s¼ vsq in the long wavelength limit and approaches the horizontal asymptote

!2 ¼ !p=
ffiffiffiffi
A
p
’ !p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2M
p

for shorter wavelengths. Frequency !1 in Equation (28)

represents the plasmonic branch (!1’!p for q! 0). In the long wavelength limit it is

!1 ’ !p þ
ðM�mÞ2

9mM
v2s q

2=!p, q! 0: ð30Þ

Due to the large disparity between the two masses m and M, we can see that the

plasma frequency has an abrupt increase towards the short-wavelength oblique asymptote

given by

!a ’
ffiffiffiffi
A
p

vsq ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=9mþ 5=9

p
vsq: ð31Þ
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For small values of !p (vanishing Coulomb coupling, z! 0), this asymptotic frequency

may look like an anomalous sound propagating with velocity

va ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=9mþ 5=9

p
vs: ð32Þ

For water, we get va’ 2vs from this formula. However, the ratios va/vs or va/v0 exhibit

a rather strong isotopic effect, which is not supported by experimental data.

10. Multi-component plasma

The model presented herein might be generalised to a multi-component plasma

consisting of several ionic species labelled i, each with number Ni of particles, density ni,

charge zie and mass mi, such that
P

izini¼ 0.
The Lagrangian of the density oscillations is given by

L ¼ �
1

2n

X
iq

mini _uiðqÞ _uið�qÞ þ
1

2n

X
ijq

ninjq
2 ’ijðqÞ þ �ðqÞ
� �

uiðqÞujð�qÞ

þ i
e

n

X
iq

niziq�ðqÞuið�qÞ, ð33Þ

where ’ij(q)¼ 4�zizje
2/q2. The equations of motion are given by

mi €ui þ 4�e2zi
X
j

zjnjuj þ q2�
X
j

njuj ¼ �iqezi�: ð34Þ

0 2
0

1

2

3

4

ω1,2

ωp

ω1

ω2

vsq/ωp

1 3

Figure 1. The spectrum of the density oscillations given by Equation (28) for the Hþz–O�2z plasma
with the same short-range interaction between ionic species.
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Making use of the notations

S1 ¼
X
i

z2i ni=mi , S2 ¼
X
i

ni=mi , S3 ¼
X
i

zini=mi, ð35Þ

the eigenfrequencies !1,2 of the system of Equations (34) in the long wavelength limit

are given by

!2
1 ’ !

2
p ¼ 4�e2S1 ¼

X
i

4�e2z2i ni
mi

, ð36Þ

which represents the plasma branch of the spectrum, and

!2
2 ’ !

2
s ¼ S2 � S2

3=S1

� �
�q2 ¼ v2s q

2, ð37Þ

which represents the sound-like excitations.5 The plasma branch of the spectrum has an

oblique asymptote given by !1 ’ !a ¼
ffiffiffiffiffiffiffiffi
�S2

p
q, which may be taken as an anomalous

sound propagating with velocity va ¼
ffiffiffiffiffiffiffiffi
�S2

p
for small values of !p. The ratio of the

two sound velocities is given by

va=vs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S2
3=S1S2

q ,
ð38Þ

which is always higher than unity. The sound branch of the spectrum has a horizontal

asymptote given by !2 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2

3=S1S2

q
!p. For the Hþz�O�2z plasma, we can check from

(38) that va/vs’ (2M/9mþ 5/9)1/2’ 2, and !2 ’ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2M
p

!p, as obtained above. As we

have discussed above, this ratio exhibits a rather strong isotopic effect, which is not in

accordance with experimental data. We assign, therefore, the additional sound to

sound-like excitations propagating with velocity vs given by Equation (37). The ordinary,

hydrodynamic sound in a multi-component mixture has the velocity v0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


P

i nimi

p
.

It can be shown that v2s=v
2
0 � n2
� for a neutral multi-component mixture.

The internal field is given by

Eint ¼ �4�e
X
i

ziniui; ð39Þ

we get easily from Equation (34)

Eint ¼ �iq�
!2
p

!2 � !2
p

ð40Þ

and the dielectric function " ¼ 1� !2
p=!

2, as expected.

11. Structure factor

The structure factor is defined by

Sðq,!Þ ¼
1

2�

Z
drdr 0dt �nðr,tÞ�nðr 0,0Þ

� �
eiqðr�r

0Þ�i!t

¼
N

2�n2

Z
dt �nðq,tÞ�nð�q,0Þ
� �

e�i!t, ð41Þ
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where the brackets stand for the thermal average (we leave aside the central peak). Since

�nðq,tÞ ¼ �iq
X
i

niuiðq,tÞ, ð42Þ

it becomes

Sðq,!Þ ¼
Nq2

2�n2

Z
dt
X
ij

ninj uiðtÞujð0Þ
� �

e�i!t, ð43Þ

where we dropped out the argument q.
In order to calculate the thermal averages, we turn back to the system of

Equations (34) without the external electric field. This system can be written as

ð�!2 þ aS1Þxþ bS3y ¼ 0,

aS3xþ ð�!
2 þ bS2Þy ¼ 0,

ð44Þ

where a¼ 4�e2, b¼�q2, S1,2,3 are given by Equation (35) and

x ¼
1

n

X
i

ziniui, y ¼
1

n

X
i

niui: ð45Þ

In addition,

ui ¼
anzi
mi!2

xþ
bn

mi!2
y: ð46Þ

The system of Equations (44) has two eigenfrequencies !1,2, as given by Equations (36)
and (37). The corresponding eigenvectors are given by

x1 � S1, y1 � S3; x2 � bS3, y2 � �aS1 ð47Þ

in the long wavelength limit. According to Equation (46) the coordinates ui can be
written as

u
ð1,2Þ
i ¼

anzi

mi!2
1,2

x1,2e
i!1,2t þ

bn

mi!2
1,2

y1,2e
i!1,2t, ð48Þ

and one can see that they are coordinates of linear harmonic oscillators with frequencies
!1,2 and potential energies

mi!
2
1,2½u

ð1,2Þ
i �

2

2
:

The thermal distribution of the coordinate u for such an oscillator is given by
dw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!2=2�T

p
expð�m!2u2=2T Þdu in the classsical limit, where T denotes the

temperature (T
�h!). It follows

u
ð1,2Þ
i u

ð1,2Þ
j

D E
¼

T

mi!2
1,2

�ij: ð49Þ

Writing

ui ¼ u
ð1Þ
i ei!1t þ u

ð2Þ
i ei!2t ð50Þ
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and making use of Equation (49), the structure factor given by Equation (43) becomes

Sðq,!Þ ¼ NTq2
X
i

n2i =n
2mi

 !
1

!2
1

�ð!� !1Þ þ
1

!2
2

�ð!� !2Þ

	 

: ð51Þ

We can see from this equation that the relevant sound contributions are given by

Sðq,!Þ ’
NT

v2s,a

X
i

n2i =n
2mi

 !
�ð!� vs,aqÞ: ð52Þ

The relaxation and damping effects can be included in the above expressions of the
structure factor. As it is well-known, they amount to representing the �-functions by
lorentzians.

12. Asymmetric short-range interaction

Up to now, the short-range interaction was assumed to be the same for all ionic species. In
general, we may introduce a short-range interaction, �ij, depending on the nature of the
ionic species. If this interaction is separable, the solution given above for a multi-
component plasma holds with minor modifications. For a non-separable short-range
interaction, appreciable changes may appear in the spectrum, which may exhibit multiple
branches. Such a spectrum may serve to identify the nature (mass and charge) of various
molecular aggregates in a multi-component plasma. It is worth noting that a range of
frequencies 1010� 1012 s�1 is documented in living cells by microwave, Raman and optical
spectroscopies and by cell-biology studies, upon which the theory of coherence domains in
living matter is built [24–30].

We consider here again the Hþz–O�2z plasma with different short-range interaction
�HH¼�1, �OO¼�2,�OH¼�3; it still exhibits two branches of frequencies, a plasmonic
one (!1) and a sound-like one (!2) but the spectrum may have certain peculiarities
(the dielectric constant is not affected by this modification). Equations of motion (15)
become now

m €uþ 2nq2ð’þ �1Þu� nq2ð2’� �3Þv ¼ �izeq�

M €vþ nq2ð4’þ �2Þv� 2nq2ð2’� �3Þu ¼ 2izeq�:
ð53Þ

We introduce the notations

a ¼ 2nq2’=m ¼ 8�ne2z2=m, b1,2,3 ¼ n�1,2,3=m: ð54Þ

The dispersion relations can be computed straightforwardly. In the long wavelength limit
(q! 0), we get the plasmonic branch

!2
1 ’ ð1þ 2�Þaþ

2b1 þ �
2b2 � 4�b3

1þ 2�
q2, ð55Þ

where (1þ 2�)a¼ 16�ne2z2/� is the plasma frequency, and the sound-like branch

!2
2 ’

�ð4b1 þ b2 þ 4b3Þ

1þ 2�
q2 ¼ v2s q

2; ð56Þ

one can see that the sound velocity vs is always a real quantity.
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The sound-like branch exhibits an asymptote in the short-wavelength limit, given by

!2
2 �

1

2
2b1 þ �b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2b1 � �b2Þ

2
þ 8�b23

q	 

q2, ð57Þ

whose slope may have either sign or vanish. It is easy to see that this slope is positive
for b235b1b2, negative for b234b1b2 (when the sound-like branch has a maximum value)
and it vanishes for b23 ¼ b1b2 (when the sound-like branch has an horizontal asymptote).
In the case of a negative slope, the sound velocity may exhibit a negative velocity and the
sound may suffer a strong absorption for moderate values of the wavevector, which may
indicate an anomalous or unphysical situation.

We return now to the plasmon branch given by Equation (55), and write it as

!2
1 ¼ !

2
p þ b2

2x2 � 4��xþ �2

1þ 2�
q2, ð58Þ

where �2 ¼ b23=b1b2 and x ¼
ffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p
: It is easy to see that for �24 1 the plasmonic

spectrum exhibits a dip around a certain value q0 of the wavevector q for
ð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1=2

p
Þ�5

ffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p
5ð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1=2

p
Þ�; it approaches an asymptote with

a positive slope for q!1, which may define again an anomalous sound for small
values of !p.

We illustrate these anomalies for a particular case of short-range interaction �1,2¼ 0
and �3¼� (b3¼ n�/m). The dispersion relations of the system of Equations (53) become

!2
1,2 ¼

1

2
!2
p 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4v2s q

2=!2
p þ
ð1þ 2�Þ2

2�
v4s q

4=!4
p

s2
4

3
5: ð59Þ

The plasmonic branch has a minimum value for q0 ’ 2
ffiffiffiffiffiffiffiffiffiffiffi
m=M
p

!p=vs, where the sound-like
branch has a maximum value (’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=M
p

!p). The spectrum is shown in Figure 2.
Using !p’ 1013s�1 estimated above and the sound velocity vs’ 3000m s�1 in water, we get
q�10 ’ 6 Å. We may expand !1 in series of (q� q0)

2 around its mimimum value at q0 and
get !1 ’ !p þ ðM=4mþ 1Þðv4s q

2
0=!

3
pÞðq� q0Þ

2
¼ !p þ ð1þ 4m=MÞv2s ðq� q0Þ

2=!p. This is
similar to the rotons-like dispersion relation discussed in connection with the coherence
domains in water [31]. Although this might be an interesting suggestion, it is
inconsequential here, because !p is too small in comparison with the temperatures
at which water exists and, therefore, this ‘dip’ feature has no effect for water
thermodynamics.

13. Conclusion

We summarise the main features of the model suggested here for liquid water. First, we
assume, as it is generally accepted, the four directional sp3-oxygen electronic orbitals.
The electron delocalisation along two such orbitals together with a corresponding
delocalisation of the hydrogen electronic charge lead to the water cohesion. It is
represented by the cohesion energy "0 discussed here. Within such a picture, we can still
visualise the oxygen and the hydrogen as neutral atoms, moving around almost freely
(as a consequence of the uniformity of the environment; this gives a noteworthy support to
the ‘hydrogen bonds’ concept).6 To this picture, the present model adds another
component, arising from a very small charge transfer between hydrogen and oxygen
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atoms, leading to a Hþz–O�2z plasma, with the reduced charge z. It may originate in the

weak asymmetry of the two occupied sp3-oxygen electronic orbitals with respect to the

other two unoccupied orbitals. Under these circumstances, the hydrogen and oxygen ions

interact, both by Coulomb and by short-range potentials. This interaction gives the plasma

frequency and the sound-like excitations frequency. The plasmons contribute to the

excitations which give rise to consistent thermodynamics for liquids, in a model introduced

recently. In addition, the ionic plasma oscillations entail oscillations of the delocalised

electronic cloud, with the same eigenfrequency. Subjected to an external field, these

electronic oscillations produce an intrinsic polarisability which removes the !¼ 0

singularity in the plasma dielectric function (the !0 frequency). In addition, the magnitude

of the electric moment p which is responsible for the orientational, static dielectric function

is in satisfactory agreement with the plasma charge z derived herein.
On the basis of this model we are able to understand, to some extent, both qualitatively

and in some places even quantitatively, the sound anomaly, the dielectric function

(permitivity dispersion), the structure factor, cohesion and thermodynamics of water.

The model is extended to a multi-component classical plasma, including an asymmetric

short-range interaction between the components, which might be relevant for more

complex structural aggregates like those in biological matter.

Notes

1. See also in this respect [3–6]. As is well-known, a classical plasma with Coulomb interaction only
is unstable.

2. We disregard here the intrinsic and orientational polarisabilities.
3. A static field D produces an electric dipole p¼ qex, where qe is the electric charge and x is a small

displacement subjected to the equation of motion me €xþme!
2
px ¼ qeD, where me is the mass of

0 2
0

1

2

ω1,2

ωp

ω1

ω2

vsq/ωpvsq0/ωp

1

Figure 2. Excitation spectrum given by Equation (59) for the Hþz�O�2z plasma with short-range
potentials �OO¼�HH¼ 0 and �OH ¼ � 6¼ 0.
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the electronic cloud. According to the plasma model suggested here, we assume that the
electronic cloud in the H–O bonds have the same eigenfrequency !p as the H–O ensemble. In the
static limit x ¼ qeD=me!

2
p (polarisability � ¼ q2e=me!

2
p in p ¼ �D), and we get a polarisation

P ¼ p=a30 ¼ q2eD=mea
3
0!

2
p, where a0 is of the order of the atomic size. We get an internal field

Eint ¼ �4�P ¼ � 4�q2e=mea
3
0

� �
D=!2

p ¼ � !2
0=!

2
p

� �
D, where !0 is a frequency of the order of

atomic frequencies. Consequently, the dielectric function " in equation D ¼ "E ¼ "ðDþ EintÞ is
given by " ’ �!2

p=!
2
0 ð!

2
p=!

2
0 � 1), which is precisely the static dielectric function given by

Equation (19).
4. It is worth noting that the mechanism of vaporisation assumed here implies the dissociation of

the water molecule.
5. The sound velocity given by (37) is always a real quantity, as a consequence of the

Schwarz–Cauchy inequality.
6. The point of view taken in this article is that the hydrogen bonds in water are introduced in

order to account for the uniformity of the environment of a water molecule in liquid water. As
such, it helps understand the cohesion. However, a consistent upholding of the hydrogen-bonds
concept would mean a vanishing dipole momentum of liquid water. Pauling himself [1], who
originally introduced this concept, qualifies it by admiting an asymmetry in the four hydrogen
bonds around an oxygen ion, arising from the two-out-of-four occupied orbitals. We suggest
that the uniformity of the environment makes the hydrogen atoms (ions) moving as independent
entities, while the asymmetry induces a small charge z, so the ion motion is subjected to
Coulomb (and short-range interactions). The electric moment is ascribed to the directional
character of the sp3–oxygen electronic orbitals and the charge transfer between oxygen and
hydrogen. Thereby, the hydrogen-bond concept is employed here through its two features,
directionality and uniformity, with a slight asymmetry, all viewed as independent qualitative
ingredients.
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